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Summary 

The Department of Planning and Environment (DPE) is using remote sensing to determine irrigated crop areas in 
the Namoi valley (NSW), and the outputs will inform water entitlements for unregulated floodplain harvesting 
based on historical use. Alluvium was engaged to review work undertaken to date and support DPE in this 
process. There were three objectives for this assessment: 

1. Verify the workflow to ensure appropriate processing of Landsat imagery and classification of 
cropped areas into irrigated and non-irrigated land. This involved examining all geoprocessing 
steps in the assessment and verifying that these steps led to: 1) accurate data for the 
Normalised Difference Vegetation Index (NDVI) and 2) correct land use classification based on 
empirically derived NDVI thresholds. 

2. Apply an enhancing approach to see if the performance can be improved by refining the 
method for handling Landsat imagery, filtering for artefacts, and objectively setting NDVI 
thresholds that discriminate between irrigated and non-irrigated areas. This involved 
automating the process by building a scripted workflow that is efficient and flexible. 

3. Apply the method to a case study area located outside of the current reported regions of 
interest, to help determine levels of certainty in final outputs. 

The key findings and outcomes of this assessment were: 

 The Normalised Difference Vegetation Index (NDVI), which has been used by DPE for assessment of 
irrigated crop areas, is a well-established remote sensing method to measure canopy greenness (based 
on its sensitivity to plant canopy chlorophyll content) and a suitable metric to identify irrigated summer 
season crop areas in the Namoi valley. 

 The summer growing season (December to March) is ideal to capture crop-specific optical signals (or 
signatures), which are critical in discerning irrigated crops from other land uses. The assumption was 
that irrigated crops are associated with unstressed signals compared to non-irrigated crops, given that 
irrigated crops do not experience the same water and/or heat stress. At the same time, both irrigated 
and non-irrigated crops are expected to have a dynamic signal compared to persistent vegetation like 
forests or plantations. 

 An automated script for identifying irrigated crop areas was developed. This builds an objective and 
systemised manner into the assessment, with two key benefits assisting the current manual image 
processing method: 

o NDVI thresholds at the property level are defined through an iterative and non-subjective 
process. 

o The impacts of rainfall, clouds, and heat and water stress, as well as satellite scaling, are each 
considered and documented in this report. 

 DPE’s existing method is based on manual and subjective setting of NDVI thresholds, which could be a 
source of error at the property level because it relies heavily on human perception and experience 
level of analyst. Whilst a key outcome from this project is an automated objective approach, in defining 
what areas are irrigated crop, the end conclusional accuracy will be ensured by a trained analyst via a 
manual subjective method (focussing on crop tone, texture, rainfall impacts and possible 
misclassification). 
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1 Introduction 

Alluvium was engaged by the Department of Planning and Environment (DPE) to review and confirm the 
workflow methods of using a remote sensing approach to determine irrigated crop areas in the Namoi valley 
was sound and based on scientific rigour. Mapping the irrigated crop areas is intended to inform the setting of 
water entitlements for floodplain harvesting based on historical use. There are 53 properties in the Namoi 
Valley that have been determined as eligible for an unregulated floodplain harvesting (FPH) entitlement, 31 of 
which relate to groundwater and 22 to an unregulated water source. 

The objectives of the assessment undertaken by Alluvium were to: 

 Verify the workflow undertaken by DPE to ensure appropriate processing of Landsat imagery and 
classification of cropped areas into irrigated and non-irrigated land. This involved examining all 
geoprocessing steps in the assessment and verifying that these steps led to both accurate data on 
Normalised Difference Vegetation Index (NDVI) and correct land use classification based on empirically 
derived NDVI thresholds. The period of interest for this analysis is 1993/94 to 1999/2000. 

This objective is addressed in: 
Section 3: DPE methods documentation and review outcomes 
Section 4: Detailed manual DPE method (step by step) 
Section 11: References 

 Apply an enhancing approach to see if the performance can be improved by refining the method used 
by DPE to handle Landsat imagery, filter for artefacts, and objectively set NDVI thresholds that 
discriminate between irrigated and non-irrigated areas. This involved providing an automated 
(scripted) workflow that can be repeated across any set of landowner properties (where each property 
is referred to as a Region of Interest orROI). The scripted method forms a sensitivity analysis that 
considers the impact of environmental factors (e.g., rainfall, cloud effect and heat waves) and satellite 
scaling factors on the mapped irrigated crop areas at the property scale. 

This objective is addressed in: 
Section 5: Scripted method enhancements 
Section 6: Enhanced scripted workflow summary of the 3 modules 
Section 7: Comparative output assessment (DPE vs Alluvium methods) 
Section 8: Summary of output (enhanced scripted workflow) 

 Apply the method to a case study area located outside of the current reported regions of interest, to 
help determine levels of certainty in final outputs. 

This objective is addressed in: 
Section 9: Enhanced scripted workflow validation (using Evapotranspiration, ET) 
Section 10: Conclusions. 
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2 DPE methods documentation and review outcomes 

2.1 Study area 

The study area is located in an agricultural area of the Namoi River catchment, which is part of the Murray 
Darling Basin (MDB) and the food bowl of Australia (House of Representatives Standing Committee on Regional 
Australia 2011). The Namoi valley comprises two distinct geographical zones – the Northern and Southern 
regions (Donaldson & Heath, 1997). These areas are also referred to as the Lower Namoi and Upper Namoi, as 
shown in Figure 1 and Figure 2 respectively. 

There are several relevant policies and instruments which regulate the use of water resources in this area, 
including but not limited to: 

 Water Sharing Plan for the Namoi and Peel Unregulated Rivers Water Sources (2012) 
 Water Sharing Plan for the Namoi Alluvial Groundwater Sources Order (2020) 
 Water Management (General) Amendment (Floodplain Harvesting Access Licences) Regulation 2022 
 NSW Floodplain Harvesting Policy (September 2018) 

The two regions are characterised by two main Koppen-Gieger climate types: Humid subtropical (Cfa) to the 
east and hot steppe (BSh) to the west (Beck et al., 2018). Mean annual rainfall in the Namoi valley varies 
between 449 to 1135 mm, with most rainfall occurring in summer and the northern regions being wetter than 
the south (Bureau of Meteorology, 2021). The topography is dominated by highlands in the south and east and 
a floodplain in the west, with the lowest elevation occurring near Walgett in the far northwest (Welsh et al., 
2014). Complex tributary systems and flat topography makes it conducive to surface or furrow irrigation (Hope 
& Bennett, 2002). The most common soil type in the region, Grey and Brown Vertosols, is characterised by a 
high clay content and water holding capacity (34–42% v/v) (Dalgliesh et al., 2012; Isbell, 2016). Cotton is the 
dominant irrigated crop, covering over 60% of the irrigated area (Green et al., 2011). 

Figure 1: Area of interest in the Lower Namoi, NSW. 
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Figure 2: Area of interest in the Upper Namoi, NSW. 

2.2 Method overview 

A high-level representation of our method is shown in Figure 3, where red boxes are sections identified as 
sources of significant error and with the possibility of revision. 

Figure 3: Data sources and step wise data processing in Google Earth Engine and ArcGIS. 
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2.3 Remotely sensed crop greenness assessment 

The Normalised Difference Vegetation Index (NDVI) was selected by DPE and endorsed as the most suitable 
measure of canopy greenness, based on its sensitivity to plant canopy chlorophyll content (Colwell, 1974; Rouse 
et al., 1974; Shanahan et al., 2015; Tucker & Choudhury, 1987). Near-infrared (NIR, 0.85-0.89 µm) radiation 
used in the NDVI is scattered by the physical structure of the leaf, resulting in high levels of reflectance and 
transmittance, while the NDVI’s red (0.63-0.69 µm) radiation is strongly absorbed by leaf pigments involved in 
photosynthesis (Blackburn, 2006; Daughtry, 2000; Jensen, 2021; Knipling, 1970). Planted crops exhibit 
significant changes in pigment concentration and structure as they develop from the early growing season 
through to maturity and senescence. 

Such changes affect reflectance in NIR and red radiation, providing the theoretical basis to the NDVI in relating 
reflected radiation from satellite images to crop-specific growth patterns and optical signatures (including 
sowing, tillering, heading and maturity points), along with crop age and any crop stress (Nguy-Robertson et al., 
2012). Therefore, a satellite based NDVI is increasingly used to monitor agricultural fields and as a tool to record 
crop phenological trends (Bhattarai et al., 2015; Ji et al., 2021; Katari et al., 2022; Liu et al., 2012; Pan et al., 
2015; Yang et al., 2021; You et al., 2013). 

Based on this evidence, the NDVI is assumed to be the correct indicator to represent summer season crop 
growth phenology in the Namoi region. 

2.4 Data source overview & inputs assessment 

Landsat-5 Thematic Mapper (TM, LT05) and Landsat-7 Enhanced Thematic Mapper Plus (ETM+, LE07) optical 
surface reflectance captured over the Namoi region in the summers of 1993-2000 was procured from Google 
Earth Engine (GEE) for the purpose of calculating a NDVI composite. Landsat-7 images were used only for 1999-
2000 due to an unavailability of Landsat-5 images during that time. Using composite (repeat) observations 
increases the chance to get cloud-free data, increases the coverage of crop cycles, and increases the reliability 
of statistical data compared to a single observation (Gómez et al., 2016). The Landsat surface reflectance data 
available on GEE are orthorectified and corrected for solar angle (USGS SR product guide). 

The Landsat data (and end outputs) were checked against data and images sourced through the NationalMap, 
which is an online map-based tool that allows easy access to spatial data from Australian Government agencies. 
It is managed by Geoscience Australia, in collaboration with CSIRO’s Data61 for software development and data 
management (see https://nationalmap.gov.au/). It has gone through pre-processing steps including radiometric 
correction, geometric correction, and cloud removal (Li et al., 2010, 2012), which makes it suitable for 
determining irrigated crop areas. Landsat-5/Landsat-7 False Colour Composite (FCC) images and Landsat-
5/Landsat-7 NDVI images were obtained from the NationalMap for the purposes of visual interpretation and 
comparison in deriving outputs. 

Within the Namoi valley, there are 375 landholder property extents. The property extent input file contains 
polygon boundaries representing various agricultural regions with independent identification numbers. 

Rainfall data for the study period were obtained through the nearest BOM rainfall station regions in the Namoi 
valley – Wee Waa (Lower Namoi) and Boggabri (Upper Namoi). These regions include five rainfall stations – 
053044 (Wee Waa, George St), 053034 (Wee Waa, Pendennis), 055007 (Boggabri Post Office), 055044 
(Boggabri Retreat) and 055268 (Boggabri Be-Bara). These stations provide continuously measured data for the 
study period and have been verified for accuracy by DPE. 

The Land Use / Land Cover (LULC) produced by DPE was used to validate and mask yearly irrigated cropping 
regions identified through crop season NDVI composites. Based on information from Australian Land Use and 
Management (ALUM), aerial high-resolution stereo images, and field knowledge (about, for example, irrigation 
infrastructure), this provides the best available land use information for the Namoi region and the versions 
prepared in 2004, 2013, 2017 and 2022 are publicly available. For this study, the LULC version from 2004 was 
used because it was the nearest available date to the study time. 
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Table 1. Data input and source/custodian summary used in the Namoi DPE assessment. 

Data Input Source / Custodian 

Imagery (Landsat-5 Thematic Mapper (LT05) and 
Landsat-7 Enhanced Thematic Mapper Plus (LE07))) 

Rainfall (5 stations) 

‘NationalMap’ (Australian government agencies, 
managed by Geoscience Australia in collaboration 
with CSIRO’s Data61) 

Extraction Platform: Google Earth Engine 

Bureau of Meteorology (BOM) 

Namoi Property boundaries (375) DPE (and Geoscience Australia) 

Land Use / Land Cover (LULC) (2004) Australian Land Use and Management (ALUM) 

Evapotranspiration (ET) METRIC EEFLUX (energy balance) 

Extraction Platform: Google Earth Engine 

2.5 Study period and data driven assessment 

Remotely sensed observations and climate data obtained for each summer season (December to March) 
between 1993/1994 and 1999/2000 were used in this analysis. Summer season observations were considered 
ideal to identify irrigated agriculture fields (Furby et al., 2008; Thomas, 2001) for three reasons: 

1. This is the growing season for irrigated crops.  It represents the complete life cycle of the irrigated 
summer season crops in the Upper and Lower Namoi. The sowing of most crops generally starts from 
early October and continues until the end of December, and harvesting generally starts at the end of 
February but may extend into mid-April (Rodriguez et al., 2011; Sacks et al., 2010). The major irrigated 
crop of the region is cotton, where the summer season (December to March) represents the entire 
cotton growth life cycle; from germination to flowering to maximum boll size or open boll (Tennakoon 
& Milroy, 2003). Other crops in rotation with cotton during the summer months are wheat, grain 
sorghum, barley, oilseeds, and grain legumes (Cooper, 1993). The summer season is therefore an ideal 
time to pick the optical signal specific for a crop (optical signature), which is critical in identifying 
irrigated crop areas in relation to other land uses. 

2. This is the season of peak growth for irrigated crops.  It is when crops require maximum water intake 
(Callan et al., 2004), allowing the capture of remotely sensed water stress signals due to insufficient 
water in non-irrigated crop areas (Ballester et al., 2019; Govender et al., 2009; Tilling et al., 2007). This 
is based on previous observations that water-stressed (non-irrigated) crops have significantly different 
canopy reflectance as compared to irrigated, non-stressed crops (e.g., maize and wheat – Aparicio et 
al., 2000; Tilling et al., 2007; Wardlow & Egbert, 2008). 

3. There is a higher chance of getting cloud-free optical satellite observations  (Ju & Roy, 2008). 
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3 The manual processing step as implemented by DPE (step by step) 

The cloud-based Google Earth Engine (GEE) geospatial system was used for processing Landsat remote imagery 
to produce summer season NDVI composites (Gorelick et al., 2017). Following that initial processing in GEE, the 
ESRI ArcGIS standalone desktop system was used to estimate NDVI thresholds that were applied to identify 
irrigated crop areas. The result of inferred irrigated crop property boundaries was spatially overlapped and 
visually checked by DPE using Land Use / Land Cover (LULC) (ver. 2004) and the NationalMap to eliminate 
wrongly identified crop regions. 

The following is a detailed explanation of each step. 

Step 1: NDVI composite estimation process (covering cloud cover and rainfall factors) 

Executing JAVA and/or Python script in Google Earth Engine (GEE) enabled the identification of all the Landsat-5 
TM observations covering the summer season (December to March). Within each ROI, the cloud coverage 
threshold used was less than 10%. 

Cloud cover reported by Landsat was considered in the processing. This is for the entire Landsat pass – i.e., for 
the entire field of view (Irish, 2000; Irish et al., 2006), which is much larger than the study area and does not 
necessarily represent the same cloud interference for each specific property extent. 

A method that can identify cloud cover for a specific masked region or equivalent factor that mitigates the 
impact of cloud fraction was embedded in the code to reduce the chances of incorrect selection of cloud-
affected observations (refer to Enhanced scripted method 5.2). An example is shown in Figure 4. 

Figure 4. Examples of Google Earth Engine Landsat 5 imagery of Lower Namoi region in Summer 1993/94, (left) 
without cloud filtering, (right) with 20% cloud filtering. 

The next consideration was eliminating all the images after a major rainfall event that occurred within the study 
area. This used two rainfall regions – Wee Waa (Lower Namoi) and Boggabri (Upper Namoi) – and was required 
because: 

 Rainfall events could result in unexpected increases in canopy greenness. In the Namoi valley, this 
could create artifacts in growth NDVI signal patterns (Wang et al., 2003). This effect is likely due to the 
positive correlations between the NDVI and water availability following rainfall (Aguilar et al., 2012; 
Wang et al., 2003). There is a time lag between NDVI response and rainfall, which is lower in a dry 
period than in a wet period, where it can take up to one month to diminish the NDVI signal impact 
(Wang et al., 2003). 
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 The presence of cirrus clouds during these events which sometimes remains undetected by cloud 
removing algorithms (Alvarez-Mendoza et al., 2019; Qiu et al., 2020; Zhu et al., 2015) and which could 
mislead NDVI signal. 

 Recent rainfall and water droplets on the crop canopy can interrupt the NDVI signal, increasing error in 
NDVI values. 

Figure 5. Examples of Landsat 5 images for the Upper Namoi: (a) high level of cloud cover, (b) partial cloud cover, 
(c) and (d) clear imagery taken in early and late summer, respectively (from ‘NationalMaps’ by Geoscience 
Australia, viewed with False colour Green SWIR NIR). 

This elimination step required a manual check to see how many days the green area of the Landsat images was 
affected after rainfall events, so it could again be a potential source of error. The Landsat images were then 
cropped to the ROI using the Namoi property outlines. After going through the above manual selection steps, 
the NIR (0.85-0.89 µm) and RED (0.63-0.69 µm) reflection bands from the remaining Landsat images in the 
composite were used to calculate per pixel NDVI values. 

A more robust and systematic method that can identify and minimise the impact of rainfall events on NDVI 
signal during the summer season would be considered an enhancement to this method (refer to Enhanced 
scripted method 5.3). 

Step 2: MAX NDVI composite finalisation 

Within GEE, the maximum NDVI raster values of the composite (Equation 1) were used to construct the final 
NDVI image for the cropping season (December – March) of a focus year. 

𝑁𝐷𝑉𝐼  = 𝑚𝑎𝑥(𝑁𝐷𝑉𝐼 , 𝑁𝐷𝑉𝐼 , … … . 𝑁𝐷𝑉𝐼 ) (1) 

where 𝑁𝐷𝑉𝐼  represents maximum NDVI composite, while n represents the number of images available for a 
season (December to March). 
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Using the maximum NDVI during the cropping summer season was considered an accurate approach to detect 
irrigated crop areas (Pervez & Brown, 2010; Shahriar Pervez et al., 2014) because: 

 This method captures the highest canopy pigmentation concentration, highest biomass, and densest 
vegetation cover achieved during the whole growing season (Paruelo et al., 2001; Wilson & Meyers, 
2007). It is assumed that NDVI is directly correlated with crop canopy chlorophyll concentration 
(Shanahan et al., 2015; Tucker & Choudhury, 1987). 

 Irrigated crops exhibit higher maximum NDVI than non-irrigated crops (Aparicio et al., 2000; Wardlow 
& Egbert, 2008), and the peak in NDVI during a dry season for any agricultural crop is a result of 
consistently adequate soil moisture that can only be a result of irrigation (Pervez & Brown, 2010) 

 Some crops are cultivated and harvested within a very short period, such as the lucerne life cycle in the 
Namoi region, which is only from December to January. 

 The classic maximum value composition (MVC) is the simplest way of interpolating temporal NDVI 
signals. It minimizes cloud contamination, ensures near-cloud-free wall-to-wall coverage, and 
minimizes sun-angle and shadow effects while reducing directional reflectance and off-nadir viewing 
effects (Cao et al., 2018; Holben, 1986). 

The resulting maximum NDVI composite map was exported as a raster file to further process in ArcGIS. 

Step 3: NDVI thresholding and manual check (iterative) process 

The final NDVI raster for the focus year generated from Google Earth Engine was imported to ESRI’s ArcGIS 
together with the Land Use / Land Cover (LULC) spatial layers to identify the satellite-based irrigated crop area. 
This processing step in ArcGIS ArcMap (or ArcGIS Pro) was done manually. 

In the NDVI raster, each pixel is considered as a mixture of two classes, namely cropping and non-cropping land 
use. In distinguishing the pixel land use, it is necessary to select a threshold value and then assign pixels to one 
of the two classes based on whether their value is above or below the threshold. However, choosing an 
appropriate threshold value for NDVI can be challenging, as there is no threshold that works well across all years 
and all ROI’s. This is because the optimal threshold for NDVI depends on a variety of factors, including the 
vegetation types, crop maturity, soil moisture, and atmospheric conditions (Nguy-Robertson et al., 2012; Wang 
et al., 2003; Wilson & Meyers, 2007). 

To address this issue, it is often necessary to consider a range of threshold values for NDVI, which is often 
selected based on an image histogram or mean and standard deviation in observed NDVI of an image (e.g., 
Gong, 1993; Mas, 1999; Pu et al., 2008; Ridd & Liu, 1998; Singh, 1989). In this application, the possible threshold 
range for NDVI was calculated as: 

𝑁𝐷𝑉𝐼 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑟𝑎𝑛𝑔𝑒  = 𝑁𝐷𝑉𝐼  (2)  + 𝜎 (0.25 −  0.75) 

where 𝑁𝐷𝑉𝐼  and 𝜎  are the average NDVI value and standard deviation of the final NDVI raster for the year y. 

Referring to the Equation 2, the value range of 0.25 – 0.75 was derived and adopted by the DPE Remote Sensing 
/ Spatial team as an acceptable threshold range within the Namoi region to improve the accuracy of irrigatable 
crop area classification. This range is within the common NDVI range for Australian vegetation, e.g., about 0.1 to 
0.7 (Bureau of Meteorology, 2023), 0.665 ± 0.044 for mangroves and saltmarshes, and 0.685 ± 0.054 for 
forested wetlands, 0.669 ± 0.067 for dunal wetlands, and 0.565 ± 0.095 for coastal swamps (Akumu et al., 
2010). 

This range was set to: 

 Cover the maximum possible irrigated crop types while avoiding outliers (non-irrigated crops, natural 
crops and background information like soil and water) with visual interpretation. 
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 Cover the maximum possible crops under different climate conditions, including heatwaves, light cloud 
coverage, and fluctuations of soil moisture. 

This threshold range was then tested using a laborious manual and time-consuming trial-and-error technique to 
determine the best threshold value for the particular year in focus. 

First, the smallest NDVI value in the threshold range was used for initial thresholding, where pixels with NDVI 
values higher than the NDVI threshold were considered ‘irrigated crop’ vegetation. A raster layer of crop area 
corresponding to the lowest NDVI threshold was generated. 

Step 4: Determining irrigated crop area (by property) 

This deterministic process involved three main sources: 

(i) Land Use Land Cover (LULC) (ver. 2004) spatial layer. 
(ii) Visual interpretation (manual checking using Landsat images) and, 
(iii) Evapotranspiration (ET), a numeric raster scale that measures the loss of water from both 

plants and the soil; needed for years with consistently high moisture for over 2 months. 

The raster layer of irrigated crop area was vectorised to polygon areas of irrigated crop, which were compared 
to the Land Use Land Cover (LULC) (ver. 2004) spatial layer. This assumed that the irrigated cropping polygons 
from LULC in 2004 covered all irrigated cropping areas in the study year (between 1993/94 and 1999/2000). 
Regions (sections of polygons) considered outside of the LULC irrigated cropping area were eliminated from the 
end result. 

The properties were then manually checked against the individual Landsat images (national scale during the 4-
month cultivated period) to identify if these regions were ‘true’ irrigated cropping areas (i.e., appeared green at 
different shades during the period, looking like cropping fields). Those that did not look like cropping areas were 
manually eliminated. 

In relation to using orthophotos to verify irrigated crop areas (using the NDVI threshold estimation method), it is 
worthwhile to note (for future reference) that DPE used Landsat for 2015 and earlier but Sentinel for 2016 and 
later, with the same workflow. As the request for floodplain harvesting purposes was from 1993 to 1999, DPE 
only used Landsat orthophoto imagery. 

The manual refinement and iterative nature of this step was in reviewing the NDVI threshold used, which 
ultimately creates the irrigated crop area extent. At this step, the NDVI minimum threshold was increased within 
the NDVI threshold range (Equation 1) to find the highest possible NDVI threshold range that detected the ‘true’ 
cropping area. On average for the Namoi region, the DPE spatial team reported this to be within the 0.66 to 
0.73 NDVI threshold range. This was repeated manually for each property, until the NDVI threshold range 
produced an accurate identification of irrigated crop area (for the study year in scope). 

DPE then classified these areas into two categories: 

(1) Definite Irrigated Crop, which fashioned regular shapes and continuously presented for a whole 
month. DPE’s existing method involved using all three forms of assessment (as explained above), 
where definite areas would be returned if all three forms provided a correct alignment with LULC, 
visual interpretation and ET confirmation (if needed). 

(2) Likely Irrigated Crop, which required another cross-check against the Landsat images (as detailed 
above). In DPE’s existing method, likely areas would be returned if two forms provided a correct 
alignment with either LULC, visual interpretation and ET confirmation (if needed). For example, 
visual interpretation and ET may not always align with LULC, where this usually aligns with dryland 
crops (and sometimes dryland cropping can be turned into an irrigated crop area). 
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Step 5: Iteration across defined time-period 

The whole workflow (as detailed from Step 1 to 4) was repeated for each year during the study period from 
1993/94 to 1999/2000. Figure 6 and 7 show examples across the Lower and Upper Namoi of detected irrigation 
crop areas for two summer cropping seasons (1993/1994 and 1999/2000). 

Figure 6. Examples of detected irrigation crop areas for the summer cropping season in the Lower Namoi for 
1993/1994 (top panel) and 1999/2000 (bottom panel). Columns from left to right: (a & e) Landsat True Colour, (b 
& f) Landsat False colour (Green, SWIR, NIR), (c & g) Landsat NDVI, and (d & h) detected irrigation cropping area. 
Landsat imagery was obtained from ‘NationalMaps’, Geoscience Australia. 
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Figure 7. Examples of detected irrigation crop area for the summer cropping season in the Upper Namoi for 
1993/1994 (top panel) and 1999/2000 (bottom panel). Columns from left to right: (a & e) Landsat True Colour, (b 
& f) Landsat False colour (Green, SWIR, NIR), (c & g) Landsat NDVI, and (d & h) detected irrigation cropping area. 
Landsat imagery was obtained from ‘NationalMaps’, Geoscience Australia. 
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   Figure 8. DPE’s end-to-end workflow (detailed information within steps) 
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4 Automated (and objective) method detail 

Alluvium has made process (automated) improvements on the current method of determining irrigated crop 
area mapping. The automation built into these improvements provide a more easily repeatable workflow that 
manages time and increases flexibility through iterative running, at both the valley and property scale. 

4.1 Automating the Normalised Difference Vegetation Index (NDVI) threshold process 

Manually setting the NDVI thresholds is subjective and time-intensive, requiring cumbersome manual checks 
against referenced layers (Furby et al., 2008). The automated and objective workflow has provided the following 
inclusions: 

 Applying image corrections or conditions prior to setting thresholds, to reduce the difference in NDVI 
values due to terrain illumination and atmospheric (e.g., cloud) conditions (Drori et al., 2020; Furby et 
al., 2008; Mayaux et al., 2004). 

 Smoothing NDVI time profiles by normalising the NDVI range in each image to a standard range, such 
as from a bare soil average NDVI value to a fully vegetated NDVI value (Mayaux et al., 2004; Shahriar 
Pervez et al., 2014). 

 Incorporating more constraint conditions and indexes to the thresholding process (i.e., a decision tree), 
including temperature, time-integrated NDVI, and leaf area index (LAI) (Shahriar Pervez et al., 2014; 
Wilson & Meyers, 2007). 

 Applying masks (e.g., for known irrigated areas and waterbodies) before setting thresholds to reduce 
the ambiguous NDVI values (Furby et al., 2008; Shahriar Pervez et al., 2014). 

 Automatic thresholding to match calibrated datasets, including high-resolution satellite images (e.g., 
Ikonos) and known irrigated areas (Furby et al., 2008; Shahriar Pervez et al., 2014). The thresholding 
sets can be constructed separately for wet years and dry years, given that the NDVI of a wet year is 
higher than a dry year for the same region (Aguilar et al., 2012; Wang et al., 2003). 

4.2 Minimising the impact of cloud-affected areas on NDVI 

Image cloud masking (per pixel review) is now included to identify: 

 Cells of dark pixels (cloud shadow). 

 Cells of cloud presence (cloud cover). 

 Cells of cloud detection (cirrus cloud formations). 

An example image showing all three of these cell types is shown in Figure 9. Applying this quality assurance (QA) 
to each daily Landsat-5 (TM)/Landsat-7 (ETM+) image excludes (or ‘masks out') only their cloud-impacted pixels 
rather than removing the whole image (an example is shown in Figure 10). The positive retention of image cell 
values across a summer season enhances the statistical distribution of daily NDVI signals, which is an important 
consideration when completing the maxNDVI composite image. 
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Figure 9. Landsat 5-TM showing cloud shadow (brown), cloud presence (pink) and cloud detection (purple). 

Figure 10. Landsat 5-TM raw image from 24th March 1998 showing cloud (left) and Google Earth Engine scripted 
properties to remove cloud shadow, presence, and detection (right). 

4.3 Minimising impact of rainfall events on NDVI 

Significant rainy days were identified as days representing more than 15% of rainfall during a given summer 
(December to March), as recorded at all five BOM rainfall stations (introduced in Section 2.4). Through analysis 
of different storm events and properties, it was determined that it takes 15 days after one of these significant 
rainfall events for NDVI signals to return to pre-rainfall conditions. 

Our enhanced method considered the rainfall coverage across both the Upper and Lower Namoi, and we 
subsequently included two extra rainfall stations – Curlewis Post Office (055014) and Breeza (Alpha) (055275) – 
in the calculation of the maxNDVI composite from GEE. 
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Accounting for the impact of rainy days on NDVI images involved two methods, both implemented in the 
enhanced scripted workflow: 

1) Identifying significant rainy days during a season (December to March) and excluding the nearest 
Landsat image from the maxNDVI composite calculation. Landsat dates excluded were within 15 days 
of the identified rainy days. This number of days can be changed in the scripted workflow to suit any 
alteration DPE requires, and all the available Landsat dates representing significant rainy days can be 
seen while the script is running. 

2) Masking NDVI pixels that resulted from a difference in the NDVI signal of +0.2 or -0.2 of the 
forthcoming NDVI date. Theoretically, this method not only accounts for significant rainfall events but 
also can eliminate the impact of heat stress on the irrigated crop areas. The NDVI signal range (e.g., 
+0.2 or – 0.2 of the previous baselined NDVI signal) can be changed in the scripted (automated??) 
workflow as required by DPE. 

The scripted workflow has been set up so that these two methods can be run in parallel or individually. Our 
recommendation is to use both methods, as this provides a cohort range to define irrigated crop areas within 
each property. 

The remaining NDVI pixels and dates, after accounting for the rainfall and cloud impacts, can be used to 
calculate maxNDVI for each summer season. All the images including the raw Landsat, the cloud mask Landsat, 
and the maxNDVI composite can be exported as an image collection (.tif) to Google Drive. 

4.4 Minimising impact of heat waves on NDVI 

Drought stress is often caused by a combination of low water availability and increased temperature. As 
described above in relation to rainy days, the enhanced method now masks the NDVI pixels that were the result 
of a difference within -0.2 to 0.2 of the forthcoming NDVI date. This has mitigated the impact of heat waves 
(drought stress) on each daily NDVI signal. If this were not accounted for, the impact of heat stress and the 
subsequent fluctuation in the NDVI signal could affect the calculation of the NDVI composite image for each 
year’s summer season. 

4.5 Applying Landsat-5 (TM)/Landsat-7 (ETM+) image scale (rescaling) factor 

Landsat Collection 2 Surface Reflectance measures the fraction of incoming solar radiation that is reflected from 
Earth’s surface to the Landsat sensor. Surface reflectance improves comparison between multiple images over 
the same region by accounting for atmospheric effects such as aerosol scattering and thin clouds, which can 
help in the detection and characterization of Earth surface change (USGS Landsat program requirements). 

A scale factor must be applied to both Collection 1 and Collection 2 Landsat Level-2 surface reflectance and 
surface temperature products before using any Landsat data (USGS). Landsat Collection 1 and Collection 2 level-
2 science products have different scaling factors, fill values, and are different data types. Landsat Collection 2 
surface reflectance has a scale factor of 0.0000275 and an additional offset of -0.2 per pixel. For example, a 
pixel value of 18,639 is multiplied by 0.0000275 for the scale factor, and then -0.2 is added for the additional 
offset to get a reflectance value of 0.313. 

4.6 Automating the NDVI threshold process 
The automated method has involved an automated script retrieving the following from the observed maxNDVI 
composite, corresponding to each growing season and ROI: 

 Actual mean maxNDVI value. 
 Actual maxNDVI pixel count. 
 Actual maxNDVI standard deviation. 
 Simulated maxNDVI threshold value where the constant varies by 0.01 (between 0.25 and 0.75). 
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This is repeated for each individual ROI (a unique number within each of the 375 property names). 

For the final output, the automated script determines an optimum criterion that determines, for each ROI, the 
modelled maxNDVI value and corresponding pixel count (irrigated crop area). The optimum (highest) ratio is 
calculated as the pixel count (area) within each ROI, relative to the pixel count (area) outside of each ROI; but 
conditionally inside DPE’s identified irrigated property boundary and LULC. As noted above, the spikes in NDVI 
(or “green flush”) immediately post rainfall events has been mitigated by the detail provided in section 4.3. 

For each of the 375 property extents within the Namoi valley, a comparison of the enhanced method with the 
existing DPE method was performed based on the final maxNDVI value and corresponding irrigated crop area. 
An observation was that both the LULC type (e.g., cropping, grazing modified pasture or irrigated cropping) and 
properties used for cropping vary depending on the year (e.g., 305 properties in 1993/94, compared to 313 
properties in 1994/95). 
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5 Enhanced scripted workflow – summary of the three modules 
The end-to-end python GIS workflow has been divided into the three key modules summarised below. Each 
module needs to run separately, one after another. For the script to run successfully, four things need to occur: 

(A) Save the “Script_Input” locally – this contains rainfall, properties, LULC, and Module 2 dependencies. 
(B) Install all the essential python libraries as imported in each of the programming modules. 
(C) Edit the code to allocate an “INPUT_PATH”. 
(D) Edit the code to allocate an “OUTPUT_PATH”. 

Module 1: Construct an NDVI composite from Google Earth Engine (GEE) 

 Runs cloud masking, so that only contaminated pixels are removed rather than the whole image. 
 Imports the Namoi ROI input file (375 properties across the Upper and Lower regions). 
 Selects Landsat summer images corresponding to crop seasons (e.g., 1993-12-01 to 1994-03-31, for 

“season=1994”). 
 Creates a maxNDVI composite using the filtered images/pixels and exports it to a user-defined location. 
 Uses rainfall information from all seven BOM stations (it is also possible to use only the nearest station). 
 Completes two methods, in parallel, that identify rain-impacted days in NDVI images (as section 4.3). 
 Downloads each image (raw Landsat images, cloud masked Landsat images, and a maxNDVI composite) to 

your drive for verification and validation. 

Module 2: Simulate the NDVI threshold and choose the optimal ROI-specific threshold and constant 

 Generates NDVI thresholds according to Equation 2, by varying the constant value (0.25 – 0.75) starting 
from 0.75 with a decrement of 0.10. We also trialled a decrement of 0.01 but the change in output was not 
significant enough to justify the computing time and cost. 

 Calculates “pixel ratio 1”, which is the ratio of cells of the NDVI composite that are “inside property pixels” 
and those cells “outside property pixels”. A ratio close to 1.0 reflects the optimal NDVI threshold and 
constant when aligned to the ROI property boundary. 

 Calculates “pixel ratio 2”, which is the ratio of cells of the NDVI composite that are inside and outside of 
LULC-defined irrigated fields (“outside LULC pixels” and “inside LULC pixels”). Conditionally, this ratio also 
includes cells within the selected ROI (reflecting the NDVI threshold and constant used). A ratio close to 0.0 
reflects the optimal NDVI threshold and constant when aligned to the LULC layer. 

The script automates the process and provides the most accurate coverage of NDVI greenness pixels within 
property boundaries and optimally aligned to LULC (as above). Two elements were added and automated 
within the script for efficiency: 
(1) An upper (0.7) and lower (0.6) NDVI threshold were applied for consistency. 
(2) An area threshold of 0.5 ha was applied to remove the small and scattered cell aggregates not 

considered part of an irrigated cropping area. Both these values are flexible and can be changed if 
needed and rerun by DPE. 

Module 3: Estimate crop area using optimal threshold and export results (raster & vector) 

 Applies, for each summer season, the NDVI threshold and constant (from Module 2) to each ROI iteratively. 
 Extracts the cell count and corresponding irrigated crop area (in hectares) for each property, in both raster 

image and vector format. 
 Extracts a summary of the LULC classification, detailing the proportion of ‘irrigated cropping’, ‘cropping’ and 

‘grazing modified pastures’. 

This module also includes automation of some manual end tasks (e.g., intersecting and dissolving 
fragmented irrigated crop areas within property boundaries and eliminating small and scattered pixels). 
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6 Comparative output assessment (DPE vs Alluvium methods) 
We compared the outputs of the existing DPE with automated Alluvium method across the 60 properties in the 
Namoi valley that are eligible for an unregulated floodplain harvesting (FPH) entitlement. Overall (at the valley 
scale), the Alluvium method produced a slightly higher (by 4.0%) irrigated crop area (102,256 ha using the 
automated method and 98,346 ha using the existing manual method). 

Table 2. Descriptive statistics of the Alluvium and DPE methods for determining irrigated crop area (for 60 
properties across six review years, from 1993/94 to 1998/99). 

Irrigated Crop Area (Ha) - DPE method Irrigated Crop Area (Ha) - Alluvium method 
Mean 273.2 Mean 284.0 
Standard Error 14.0 Standard Error 17.7 
Median 191.5 Median 186.8 
Mode 0.0 Mode 0.0 
Standard Deviation 265.2 Standard Deviation 335.5 
Sample Variance 70,315.1 Sample Variance 112,578.6 
Kurtosis 5.8 Kurtosis 15.9 
Skewness 1.9 Skewness 3.3 
Range 1,662.0 Range 2,610.2 
Minimum 0.0 Minimum 0.0 
Maximum 1,662.0 Maximum 2,610.2 
Sum 98,345.7 Sum 102,255.8 
Count 360.0 Count 360.0 
Confidence Level (95.0%) 27.5 Confidence Level (95.0%) 34.8 

A confidence category was assigned to each of the 60 properties, comparing the final irrigated crop area (ha) 
output from the two methods. The confidence category reflects the variance (average of differences) measured 
in irrigated crop area average across the six years (1993/94 to 1998/99). Four confidence categories were 
assigned, as below, including a count of property allocation: 

 Very High (+ - 0 to 2 % variance) – 14 unregulated properties, 23% of total 

 High (+ - 2 to 5 % variance) – 23 unregulated properties, 38% of total 

 Moderate (+ - 5 to 10 % variance) – 18 unregulated properties, 30% of total 

 Low (+ - > 10 % variance) – 5 unregulated properties, 8% of total) 

Table 3 shows an assessment of the differences between the two methods, highlighting the properties that may 
need further scrutiny and review (‘Moderate’ and ‘Low’ confidence categories). 

Overall, the two methods produced similar results, with 92% of the properties within 10%.  Most (61%) of the 60 
unregulated properties were even within 5% variance between the two methods. 
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Figure 11. Irrigated crop areas at the  site derived from ET data (top) and the NDVI Alluvium 
method (bottom), both within the 1993/94 summer season. 
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Figure 12. Irrigated crop areas at the  site derived from ET data (top) and the NDVI Alluvium method 
(bottom), both within the 1998/99 summer season. 
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 and  derived Figure 13. Irrigated crop areas at the  (comprised of 
from ET data (top) and the NDVI Alluvium method (bottom), both within the 1993/94 summer season. 
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Table 5. Regression statistics for the relationship between evapotranspiration (ET) and Normalised Difference 
Vegetation Index (NDVI) at the three validation test sites. 

Figure 14. Relationship between evapotranspiration (ET) and the Normalised Difference Vegetation Index (NDVI) 
at the three validation test sites, with a line of best fit (r-squared = 0.218, adjusted r-squared = 0.218). 
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9 Conclusions 

 The Normalised Difference Vegetation Index (NDVI), which was selected by DPE, is a method supported by 
scientific literature to correctly measure canopy greenness. It is based on sensitivity to plant canopy 
chlorophyll content and, to some extent, the canopy’s photosynthetic activeness, and can be used to 
represent summer season crop growth areas. 

 The summer season (December to March) is ideal to pick the optical signal specific for a crop (its optical 
signature), which is critical in distinguishing irrigated crop areas from other land uses. 

 Alluvium’s automated method provides DPE with the ability to quickly, easily and systematically calculate 
(and then repeat if necessary) the irrigated cropping area for any property in the Namoi valley. 

 Whilst both the DPE and Alluvium methods have benefits (accuracy levels) and apparent errors [founded 
by the way processing and analysis is completed, i.e., subjective, and manual (DPE) vs objective and 
automated (Alluvium), the output from this project provides DPE with a spatial workflow that: 

(i) Considered rainfall coverage and designed a systematic method to account for rainfall events 
on the NDVI signal. 

(ii) Minimised the cloud impact on Landsat 5-TM images, by accounting for (but not completely 
removing) daily images with cloud shadow, cloud presence and cloud detection. 

(iii) Mitigated the impact of heat waves (drought stress) on daily NDVI signals. 
(iv) Optimised ROI-specific NDVI thresholds, constant values, property boundaries and LULC 

extents. 

 At the valley scale, there was strong correspondence and a high level of confidence between the DPE and 
Alluvium methods, where 92% of the properties were within 10%. To achieve a highly accurate indicator at 
the property scale, it is recommended that DPE review the automated / scripted workflow and complete 
further refinement and accuracy investigation (such as an in-depth sensitivity assessment of specific 
parameters within the three python modules, outlined in Section 5). 

 There appears to be a relationship between NDVI and ET when inferring irrigated cropping areas. It is 
recommended that this relationship be explored further with comparable and more extensive datasets. 
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